

New insights into lung resident immunity to Mycobacterium tuberculosis

Henry Mwandumba

Malawi Liverpool Wellcome Research Programme, Malawi

13th June 2023; Recognition and Control of Mtb infected Cells: From Basics to the Clinic

Overview of the immune response to Mtb

Adapted from Rook & Zumla Nat Rev Immunol 2005

North & Jung. Ann Rev. Immunol. 2004

M. tuberculosis infection triggers recruitment of interstitial macrophages to the infected lung

Srivastava S et al., Immunol Rev 2014; Huang L et al., J Exp Med 2018

PMN

AM

IM

Others

Alveolar phagocytes are critical in early immune responses to Mtb

Environmental pressures active within the phagocyte.

Current paradigm of macrophage control of Mtb

Controller Cells

- Th1 activated macrophages
- Product of IFN-g exposure
- Good at controlling Mtb *in vitro* and *in vivo* (in mice)
- Efficacy revealed in loss of function studies (KO mice)

 Vaccine efficacy assessed by immune correlates of Th1

Permissive Cells

- M2 macrophages or another cell type?
- Exposure to IL-10/IL-4 or TGF-b?
- Permissive for bacterial expansion in vitro and in vivo?
- We have minimal data on bacterial permissiveness as an immune function

- We also need bacterial correlates of permissiveness +/- immune correlates.

Using HIV infection to understand immunity to *M. tuberculosis* in the human lung

HIV infection increases the risk of developing TB disease

Cumulative hazard estimate of pulmonary TB incidence, by HIV status among South African gold miners (Pre-ART)

TB incidence rates during 8 years of follow-up of an ART cohort in South Africa: comparison with rates in the community

Gupta et al., PLoS One 2012

Potential mechanisms for increased risk of TB disease in HIVinfected people

HIV infection of alveolar CD4⁺ T-cells: Loss of immune surveillance

Alveolar macrophages (AMs) co-infected with HIV & Mtb:

Impaired phagocyte function & loss of immune recognition

Alveolar macrophages co-infected with HIV & Mtb: Increased permissiveness for Mtb

Altered airway immune microenvironment

HIV-associated impairment and ART-mediated recovery of alveolar pathogen-specific immune responses

Delayed and incomplete recovery of *M. tuberculosis*-specific CD4+ T cell numbers and function in HIV-infected adults on long term ART

Jambo et al., Am J Respir Crit Care Med 2014

HIV-associated impairment of airway innate effector cells

Impaired AM phagosome function pre-ART and delayed recovery on ART. HIV-associated depletion of MAIT cells in the airway targets the resident population.

Jambo KC et al., Am J Respir Crit Care Med 2014

Mvaya L et al., Frontiers Immunol 2019

Pisu et al., J Exp Med 2021

Growth of Mtb in vivo segregates with host macrophage metabolism and ontogeny

- In the M1/M2 Re-Programming model Mtb growth is regulated by cytokine environment.
- In the Pre-Programming model macrophage metabolism and ontogeny regulate Mtb growth.

Lu Huang et al. J Exp Med 2018

Concluding remarks

- 1. Immunity to *M. tuberculosis* is complex.
- 2. Altered lung immune environment may promote/enhance growth & survival of Mtb in permissive AMs and progression to active TB.
- 3. Exploiting HIV-mediated lung immune impairment may unravel what constitutes protective immunity to TB in humans.
- 4. Modulation of epigenetic programming of tissue resident macrophage lineages by new TB vaccines/drugs could be a novel strategy to impact Mtb infection, control and persistence in humans.